Loading...
Stroke2004Nov01Vol.35issue(11)

大脳動脈瘤に対する壁せん断応力の大きさと役割:20中大脳動脈瘤の計算流体動的研究

,
,
,
,
,
,
,
,
文献タイプ:
  • Journal Article
概要
Abstract

背景と目的:壁のせん断応力(WSS)は、秘密の脳動脈瘤の発達における主要な病原性因子の1つです。人間の中大脳動脈(MCA)動脈瘤の中および周辺のWSSの大きさと分布は、計算された流体ダイナミクス(CFD)の方法を使用して分析されました。 方法:動脈瘤を備えたMCA血管の20の数学モデルは、3次元コンピューターの断層撮影血管造影によって作成されました。CFD計算は、血液のニュートン液特性と血管および動脈瘤の剛性壁特性を仮定して、元の有限要素ソルバーを使用して実行されました。 結果:計算された領域の最大WSSは、その先端やBLEBではなく、動脈瘤の首の近くで発生する傾向がありました。最大WSSの大きさは14.39 +/- 6.21 N/m2であり、これは容器領域の平均WSSよりも4倍高かった(3.64 +/- 1.25 N/m2)。動脈瘤領域の平均WSS(1.64 +/- 1.16 N/m2)は、血管領域のWSSよりも有意に低かった(P <0.05)。破裂した動脈瘤の先端にあるWSSSは著しく低かった。 結論:これらの結果は、開始段階での高いWSSの病原性効果とは対照的に、低WSSが成長期を促進し、動脈瘤壁に変性変化を引き起こすことにより脳動脈瘤の破裂を引き起こす可能性があることを示唆しています。動脈瘤領域のWSSは、破裂の予測に何らかの助けになるかもしれません。

背景と目的:壁のせん断応力(WSS)は、秘密の脳動脈瘤の発達における主要な病原性因子の1つです。人間の中大脳動脈(MCA)動脈瘤の中および周辺のWSSの大きさと分布は、計算された流体ダイナミクス(CFD)の方法を使用して分析されました。 方法:動脈瘤を備えたMCA血管の20の数学モデルは、3次元コンピューターの断層撮影血管造影によって作成されました。CFD計算は、血液のニュートン液特性と血管および動脈瘤の剛性壁特性を仮定して、元の有限要素ソルバーを使用して実行されました。 結果:計算された領域の最大WSSは、その先端やBLEBではなく、動脈瘤の首の近くで発生する傾向がありました。最大WSSの大きさは14.39 +/- 6.21 N/m2であり、これは容器領域の平均WSSよりも4倍高かった(3.64 +/- 1.25 N/m2)。動脈瘤領域の平均WSS(1.64 +/- 1.16 N/m2)は、血管領域のWSSよりも有意に低かった(P <0.05)。破裂した動脈瘤の先端にあるWSSSは著しく低かった。 結論:これらの結果は、開始段階での高いWSSの病原性効果とは対照的に、低WSSが成長期を促進し、動脈瘤壁に変性変化を引き起こすことにより脳動脈瘤の破裂を引き起こす可能性があることを示唆しています。動脈瘤領域のWSSは、破裂の予測に何らかの助けになるかもしれません。

BACKGROUND AND PURPOSE: Wall shear stress (WSS) is one of the main pathogenic factors in the development of saccular cerebral aneurysms. The magnitude and distribution of the WSS in and around human middle cerebral artery (MCA) aneurysms were analyzed using the method of computed fluid dynamics (CFD). METHODS: Twenty mathematical models of MCA vessels with aneurysms were created by 3-dimensional computed tomographic angiography. CFD calculations were performed by using our original finite-element solver with the assumption of Newtonian fluid property for blood and the rigid wall property for the vessel and the aneurysm. RESULTS: The maximum WSS in the calculated region tended to occur near the neck of the aneurysm, not in its tip or bleb. The magnitude of the maximum WSS was 14.39+/-6.21 N/m2, which was 4-times higher than the average WSS in the vessel region (3.64+/-1.25 N/m2). The average WSS of the aneurysm region (1.64+/-1.16 N/m2) was significantly lower than that of the vessel region (P<0.05). The WSSs at the tip of ruptured aneurysms were markedly low. CONCLUSIONS: These results suggest that in contrast to the pathogenic effect of a high WSS in the initiating phase, a low WSS may facilitate the growing phase and may trigger the rupture of a cerebral aneurysm by causing degenerative changes in the aneurysm wall. The WSS of the aneurysm region may be of some help for the prediction of rupture.

医師のための臨床サポートサービス

ヒポクラ x マイナビのご紹介

無料会員登録していただくと、さらに便利で効率的な検索が可能になります。

Translated by Google