Loading...
The Journal of chemical physics2010Nov07Vol.133issue(17)

カスプ条件を使用したカップルと相関する結合クラスター理論I結合クラスターシングルとダブルの摂動分析(CCSD-F12)

,
,
文献タイプ:
  • Journal Article
概要
Abstract

カスプ条件によって決定される、スレーター型相関因子と固定膨張係数に基づくゲミナル関数は、近年、結合クラスター理論に明示的な電子相関を導入するための効率的で数値的に安定した方法として転送されています。この作業では、明示的に相関した結合クラスターシングルとダブル(CCSD-F12)理論の方程式を分析し、文献にあるさまざまな近似を特徴付けて理解するために使用できる摂動理論に基づく順序付けスキームを導入します。29分子のテストセットの数値結果は、分析をサポートし、追加の洞察を提供します。特に、我々の結果は、無視された、そうでなければ個別に大きい3次のジェミナル結合項の非常に体系的なキャンセルに基づいたCCSD(F12)近似の成功を合理化するのに役立ちます。CCSD(F12)のさらなる近似は、従来のダブルスクラスター振幅とジェミナルダブルス振幅の間の3次カップリング項全体が保持され、最近提案されたCCSD [F12]およびCCSDにつながる場合、精度を犠牲にすることなく導入できます(F12(∗))モデルは、従来のCCSD計算と比較してオーバーヘッドが無視できるモデルです。特に、CCSD-F12Bなどの他の既存の近似を改善するために使用できるリング期の型貢献の重要性が指摘されています。小さな基底セットの場合、CCSD-F12(∗)につながる特定の高次用語を維持することが有利かもしれません。これは、SP Ansatzの場合、CCSD(F12(∗))への非適格補正を含むだけです。

カスプ条件によって決定される、スレーター型相関因子と固定膨張係数に基づくゲミナル関数は、近年、結合クラスター理論に明示的な電子相関を導入するための効率的で数値的に安定した方法として転送されています。この作業では、明示的に相関した結合クラスターシングルとダブル(CCSD-F12)理論の方程式を分析し、文献にあるさまざまな近似を特徴付けて理解するために使用できる摂動理論に基づく順序付けスキームを導入します。29分子のテストセットの数値結果は、分析をサポートし、追加の洞察を提供します。特に、我々の結果は、無視された、そうでなければ個別に大きい3次のジェミナル結合項の非常に体系的なキャンセルに基づいたCCSD(F12)近似の成功を合理化するのに役立ちます。CCSD(F12)のさらなる近似は、従来のダブルスクラスター振幅とジェミナルダブルス振幅の間の3次カップリング項全体が保持され、最近提案されたCCSD [F12]およびCCSDにつながる場合、精度を犠牲にすることなく導入できます(F12(∗))モデルは、従来のCCSD計算と比較してオーバーヘッドが無視できるモデルです。特に、CCSD-F12Bなどの他の既存の近似を改善するために使用できるリング期の型貢献の重要性が指摘されています。小さな基底セットの場合、CCSD-F12(∗)につながる特定の高次用語を維持することが有利かもしれません。これは、SP Ansatzの場合、CCSD(F12(∗))への非適格補正を含むだけです。

Geminal functions based on Slater-type correlation factors and fixed expansion coefficients, determined by cusp conditions, have in recent years been forwarded as an efficient and numerically stable method for introducing explicit electron correlation into coupled-cluster theory. In this work, we analyze the equations of explicitly correlated coupled-cluster singles and doubles (CCSD-F12) theory and introduce an ordering scheme based on perturbation theory which can be used to characterize and understand the various approximations found in the literature. Numerical results for a test set of 29 molecules support our analysis and give additional insight. In particular, our results help rationalize the success of the CCSD(F12) approximation which is based on a very systematic cancellation of the neglected, otherwise individually large third-order geminal-geminal coupling terms. Further approximations to CCSD(F12) can be introduced without sacrificing the accuracy if the entire set of third-order coupling terms between the conventional doubles cluster amplitudes and the geminal doubles amplitudes is retained, leading to the recently proposed CCSD[F12] and CCSD(F12(∗)) models, which have negligible overhead compared to conventional CCSD calculations. Particularly, the importance of the ring-term type contribution is pointed out which may be used to improve on other existing approximations such as CCSD-F12b. For small basis sets, it might be advantageous to keep certain higher-order terms leading to CCSD-F12(∗), which, for the case of the SP ansatz, merely involves a noniterative correction to CCSD(F12(∗)).

医師のための臨床サポートサービス

ヒポクラ x マイナビのご紹介

無料会員登録していただくと、さらに便利で効率的な検索が可能になります。

Translated by Google