著名医師による解説が無料で読めます
すると翻訳の精度が向上します
局所的に相互作用する新しいタイプの量子回路 - 積極的な細胞オートマトンを提案します。これは、一周(IRF)の単一相互作用によって生成されます。具体的には、ローカルヒルベルト空間寸法D [Duirf(d)]を使用したデュアル統一IRFのセット(またはマニホールド)について説明します。ローカルオブザーバブルの任意の動的相関関数が、最近研究されたデュアル統一レンガ造りの門(DUBG)で作られた最近研究された回路に対して完全に類似して統合マップを維持する有限級の完全に正のトレースの観点からどのように評価できるかを示します。デュアル統一IRF回路で最も単純な非消滅的なローカル相関関数は、2つの隣接するサイトで非文書的にサポートされている観測可能性を含むことが示されています。キュビット(d = 2)のDuirf(2)の10次元マニホールドを完全に特徴付け、D = 3,4、…、7を提供します。デュアルアニタリーIRFゲートのランダムインスタンスの。並行して、同じアルゴリズムを適用してdimdubg(d)を決定し、d = 2,3、…、7についてはdimduirf(d)よりも体系的に大きいものの、それらが同様の順序であることを示します。両方のセットが、接線空間の次元がセットの異なるランダムに生成されたポイント間で異なるという意味で、D≥3のかなり複雑なトポロジを持っていることは注目に値します。最後に、DUBG回路のキラル拡張の次元に関する追加のデータを提供します。寸法の明確なローカルヒルベルト空間d≠d '均一/奇数格子サイトに存在します。
局所的に相互作用する新しいタイプの量子回路 - 積極的な細胞オートマトンを提案します。これは、一周(IRF)の単一相互作用によって生成されます。具体的には、ローカルヒルベルト空間寸法D [Duirf(d)]を使用したデュアル統一IRFのセット(またはマニホールド)について説明します。ローカルオブザーバブルの任意の動的相関関数が、最近研究されたデュアル統一レンガ造りの門(DUBG)で作られた最近研究された回路に対して完全に類似して統合マップを維持する有限級の完全に正のトレースの観点からどのように評価できるかを示します。デュアル統一IRF回路で最も単純な非消滅的なローカル相関関数は、2つの隣接するサイトで非文書的にサポートされている観測可能性を含むことが示されています。キュビット(d = 2)のDuirf(2)の10次元マニホールドを完全に特徴付け、D = 3,4、…、7を提供します。デュアルアニタリーIRFゲートのランダムインスタンスの。並行して、同じアルゴリズムを適用してdimdubg(d)を決定し、d = 2,3、…、7についてはdimduirf(d)よりも体系的に大きいものの、それらが同様の順序であることを示します。両方のセットが、接線空間の次元がセットの異なるランダムに生成されたポイント間で異なるという意味で、D≥3のかなり複雑なトポロジを持っていることは注目に値します。最後に、DUBG回路のキラル拡張の次元に関する追加のデータを提供します。寸法の明確なローカルヒルベルト空間d≠d '均一/奇数格子サイトに存在します。
We propose a new type of locally interacting quantum circuits-quantum cellular automata-that are generated by unitary interactions round-a-face (IRF). Specifically, we discuss a set (or manifold) of dual-unitary IRFs with local Hilbert space dimension d [DUIRF (d)], which generate unitary evolutions both in space and time directions of an extended 1+1 dimensional lattice. We show how arbitrary dynamical correlation functions of local observables can be evaluated in terms of finite-dimensional completely positive trace preserving unital maps in complete analogy to recently studied circuits made of dual-unitary brick gates (DUBGs). The simplest non-vanishing local correlation functions in dual-unitary IRF circuits are shown to involve observables non-trivially supported on two neighboring sites. We completely characterize the ten-dimensional manifold of DUIRF (2) for qubits ( d=2) and provide, for d=3,4,…,7, empirical estimates of its dimensionality based on numerically determined dimensions of tangent spaces at an ensemble of random instances of dual-unitary IRF gates. In parallel, we apply the same algorithm to determine dimDUBG(d) and show that they are of similar order though systematically larger than dimDUIRF(d) for d=2,3,…,7. It is remarkable that both sets have a rather complex topology for d≥3 in the sense that the dimension of the tangent space varies among different randomly generated points of the set. Finally, we provide additional data on dimensionality of the chiral extension of DUBG circuits with distinct local Hilbert spaces of dimensions d≠d' residing at even/odd lattice sites.
医師のための臨床サポートサービス
ヒポクラ x マイナビのご紹介
無料会員登録していただくと、さらに便利で効率的な検索が可能になります。